OpenNFT: An open-source Python/Matlab framework for real-time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis

نویسندگان

  • Yury Koush
  • John Ashburner
  • Evgeny Prilepin
  • Ronald Sladky
  • Peter Zeidman
  • Sergey Bibikov
  • Frank Scharnowski
  • Artem Nikonorov
  • Dimitri Van De Ville
چکیده

Neurofeedback based on real-time functional magnetic resonance imaging (rt-fMRI) is a novel and rapidly developing research field. It allows for training of voluntary control over localized brain activity and connectivity and has demonstrated promising clinical applications. Because of the rapid technical developments of MRI techniques and the availability of high-performance computing, new methodological advances in rt-fMRI neurofeedback become possible. Here we outline the core components of a novel open-source neurofeedback framework, termed Open NeuroFeedback Training (OpenNFT), which efficiently integrates these new developments. This framework is implemented using Python and Matlab source code to allow for diverse functionality, high modularity, and rapid extendibility of the software depending on the user's needs. In addition, it provides an easy interface to the functionality of Statistical Parametric Mapping (SPM) that is also open-source and one of the most widely used fMRI data analysis software. We demonstrate the functionality of our new framework by describing case studies that include neurofeedback protocols based on brain activity levels, effective connectivity models, and pattern classification approaches. This open-source initiative provides a suitable framework to actively engage in the development of novel neurofeedback approaches, so that local methodological developments can be easily made accessible to a wider range of users.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time fMRI data for testing OpenNFT functionality

Here, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants (i.e., one neurofeedback run per participant), their structural scans and pre-selected ROIs/masks...

متن کامل

Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An FSL-Integrated BCI Toolbox

The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior ...

متن کامل

Advances in fMRI Real-Time Neurofeedback

Functional magnetic resonance imaging (fMRI) neurofeedback is a type of biofeedback in which real-time online fMRI signals are used to self-regulate brain function. Since its advent in 2003 significant progress has been made in fMRI neurofeedback techniques. Specifically, the use of implicit protocols, external rewards, multivariate analysis, and connectivity analysis has allowed neuroscientist...

متن کامل

Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆

Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. H...

متن کامل

A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals

There is a recent increase in the use of multivariate analysis and pattern classification in prediction and real-time feedback of brain states from functional imaging signals and mapping of spatio-temporal patterns of brain activity. Here we present MANAS, a generalized software toolbox for performing online and offline classification of fMRI signals. MANAS has been developed using MATLAB, LIBS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 156  شماره 

صفحات  -

تاریخ انتشار 2017